Pattern formation in 8-cell composite embryos of Xenopus laevis.
نویسندگان
چکیده
We have shown in defect experiments that an 8-cell embryo of Xenopus laevis consists of three kinds of cells, that is, animal, vegetal dorsal and vegetal ventral cells, and that cells of different kinds are distinctly different in their developmental capacity. Complete pattern formation occurs in any defect embryo which contains at least two animal, one vegetal dorsal and one vegetal ventral cell. In the present transplantation experiments, we replaced one or two cells of one 8-cell embryo by those of another to obtain 29 series of composite embryos, in which the cell composition of an embryo and/or the dorsoventral orientation of individual cells differed from those of a normal 8-cell embryo. The resulting embryos were examined macroscopically when controls reached stage 26 (tailbud stage) and later. The results showed that both the two animal dorsal cells or one vegetal dorsal cell could be replaced by animal ventral cells or a vegetal ventral cell, respectively, without any detectable effect on pattern formation, irrespective of the ventrodorsal direction of the ventral cells. On the other hand, replacement of an animal ventral or a vegetal ventral cell by an animal dorsal or a vegetal dorsal cell, respectively, made most composite embryos twins. Twins were also formed when a left-handed vegetal dorsal cell was replaced by a right-handed counterpart and vice versa. In these composite embryos, the dorsoventral orientation of the transplanted cell was different from that of a resident dorsal cell or cells of a recipient, and several lines of evidence show that the dorsal cell transplanted in an off-axis orientation is responsible for twin formation. Thus, dorsal cells have the capacity to form dorsal axial structures at later stages and this capacity is localized on the dorsal side, and endows the cells with polarity. On the other hand, ventral cells did not have this capacity or polarity, judging from the fact that their orientation had no effect on pattern formation. One vegetal dorsal or ventral cell could be replaced by an animal dorsal or ventral cell, respectively, without any marked effect. However, replacement of two vegetal cells by animal ones and of one or two animal cells by vegetal ones resulted in deficiency of vegetal cells and oedema and in deficiency of animal cells and incomplete invagination, respectively. Twin formation in composite embryos with animal dorsal cells in place of animal ventral ones is discussed in consideration of findings in recombination experiments by Nieuwkoop.
منابع مشابه
Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملConnexins in the early development of the African clawed frog Xenopus laevis (Amphibia): The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis
Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR) and western blotting we show that a Cx43-like molecule is present in ooc...
متن کاملTwin Xenopus laevis embryos appearing from flattened eggs
Remarkable progress has recently been made in molecular biology of double axis formation in Xenopus laevis. Leaving aside, for the time being, the problem of the gene expressions regulating Xenopus laevis development, here I show that pulse treatment could induce formation of a secondary axis in a fertilized Xenopus laevis egg. At 3 min after insemination, metal oxides were added to Xenopus fer...
متن کاملThe cortex of Xenopus laevis embryos: regional differences in composition and biological activity.
The cortex of fertilized Xenopus laevis eggs undergoes regional changes in its composition and morphogenetic activity during the first three divisions. Gray crescent and animal pole cortex of stage 1 (1-cell) and stage 4 (8-cell) embryos each contain a characteristic array of proteins. Implantation of pieces of cortex into the blastocoel of midblastula embryos was used to assay their inductive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 91 شماره
صفحات -
تاریخ انتشار 1986